Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
2.
Med Phys ; 51(2): 740-771, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38054538

ABSTRACT

The last decade has seen a large growth in fluorescence-guided surgery (FGS) imaging and interventions. With the increasing number of clinical specialties implementing FGS, the range of systems with radically different physical designs, image processing approaches, and performance requirements is expanding. This variety of systems makes it nearly impossible to specify uniform performance goals, yet at the same time, utilization of different devices in new clinical procedures and trials indicates some need for common knowledge bases and a quality assessment paradigm to ensure that effective translation and use occurs. It is feasible to identify key fundamental image quality characteristics and corresponding objective test methods that should be determined such that there are consistent conventions across a variety of FGS devices. This report outlines test methods, tissue simulating phantoms and suggested guidelines, as well as personnel needs and professional knowledge bases that can be established. This report frames the issues with guidance and feedback from related societies and agencies having vested interest in the outcome, coming from an independent scientific group formed from academics and international federal agencies for the establishment of these professional guidelines.


Subject(s)
Diagnostic Imaging , Image Processing, Computer-Assisted , Fluorescence , Phantoms, Imaging
4.
J Orthop Res ; 41(1): 104-114, 2023 01.
Article in English | MEDLINE | ID: mdl-35289956

ABSTRACT

Tourniquet use creates a reduced blood surgical field during total knee arthroplasty (TKA), however, prolonged ischemia may cause postoperative tourniquet complications. To understand the effects of tourniquet-induced ischemia, we performed a prospective observational study using quantitative broadband diffuse optical spectroscopy (DOS) to measure tissue hemodynamics and water and lipid concentrations before, during, and after tourniquet placement in subjects undergoing TKA. Data was collected for 6 months and, of the total subjects analyzed (n = 24), 22 were primary TKAs and 2 were revision TKA cases. We specifically investigated tourniquet-induced hemodynamics based upon subject-specific tissue composition and observed a significant relationship between the linear rate of deoxygenation after tourniquet inflation and water/lipid ratio (W/L, p < 0.0001) and baseline somatic tissue oxygen saturation, StO2 (p = 0.05). Subjects with a low W/L ratio exhibited a lower tissue metabolic rate of oxygen consumption, (tMRO2 ) (p = 0.008). Changes in deoxyhemoglobin [HbR] (p = 0.009) and lipid fraction (p = 0.001) were significantly different between high and low W/L subject groups during deoxygenation. No significant differences were observed for hemodynamics during reperfusion and total tourniquet time was neither significantly related to the hemodynamic hyperemic response (p = 0.73) nor the time to max StO2 after tourniquet release (p = 0.57). In conclusion, we demonstrate that DOS is capable of real-time monitoring of tissue hemodynamics distal to the tourniquet during TKA, and that tissue composition should be considered. DOS may help surgeons stratify hemodynamics based upon tissue composition and eventually aid the preoperative risk assessment of vascular occlusions from tourniquet use during TKA.


Subject(s)
Arthroplasty, Replacement, Knee , Hemodynamics , Ischemia , Humans , Arthroplasty, Replacement, Knee/adverse effects , Ischemia/etiology , Ischemia/prevention & control , Lipids , Spectrum Analysis , Tourniquets
5.
J Biomed Opt ; 27(6)2022 06.
Article in English | MEDLINE | ID: mdl-35676754

ABSTRACT

SIGNIFICANCE: Growing levels of obesity and metabolic syndrome have driven demand for more advanced forms of body composition assessment. While various techniques exist to measure body composition, devices are typically expensive and not portable, involve radiation [in the case of dual-energy x-ray absorptiometry (DXA)], and are limited to analysis of adiposity while metabolic information from blood supply and oxygenation are not considered. AIM: We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used to predict site-specific adiposity and percent fat (whole body) while simultaneously providing information about local tissue hemoglobin levels and oxygenation. APPROACH: DOSI measures of tissue composition in gastrocnemius, quadriceps, abdomen, and biceps, DXA whole-body composition, and ultrasound-derived skin and adipose tissue thickness (SATT) in the quadriceps were obtained from 99 individuals aged 7 to 34 years old. RESULTS: Various DOSI-derived parameters were correlated with SATT and an optical method is proposed for estimating SATT using a newly defined parameter, the optical fat fraction (OFF), which considers all parameters that correlate with SATT. Broadband absorption and scattering spectra from study participants with the thinnest (SATT ≈ 0.25 ± 0.02 cm) and thickest SATT (SATT ≈ 1.55 ± 0.14 cm), representing best estimates for pure in vivo lean and fatty tissue, respectively, are reported. Finally, a trained prediction model is developed which allows DOSI assessment of OFF to predict DXA body-fat percentage, demonstrating that DOSI can be used to quantify body composition. CONCLUSIONS: This study shows that DOSI can be used to assess the adiposity of specific tissues or the entire human body, and the OFF parameter is defined for corroboration and further evaluation in future research.


Subject(s)
Adipose Tissue , Body Composition , Adipose Tissue/diagnostic imaging , Adolescent , Adult , Child , Humans , Muscle, Skeletal/diagnostic imaging , Obesity , Spectrum Analysis , Young Adult
6.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35653192

ABSTRACT

Vitiligo is an autoimmune skin disease characterized by the destruction of melanocytes by autoreactive CD8+ T cells. Melanocyte destruction in active vitiligo is mediated by CD8+ T cells, but the persistence of white patches in stable disease is poorly understood. The interaction between immune cells, melanocytes, and keratinocytes in situ in human skin has been difficult to study due to the lack of proper tools. We combine noninvasive multiphoton microscopy (MPM) imaging and single-cell RNA-Seq (scRNA-Seq) to identify subpopulations of keratinocytes in stable vitiligo patients. We show that, compared with nonlesional skin, some keratinocyte subpopulations are enriched in lesional vitiligo skin and shift their energy utilization toward oxidative phosphorylation. Systematic investigation of cell-to-cell communication networks show that this small population of keratinocyte secrete CXCL9 and CXCL10 to potentially drive vitiligo persistence. Pseudotemporal dynamics analyses predict an alternative differentiation trajectory that generates this new population of keratinocytes in vitiligo skin. Further MPM imaging of patients undergoing punch grafting treatment showed that keratinocytes favoring oxidative phosphorylation persist in nonresponders but normalize in responders. In summary, we couple advanced imaging with transcriptomics and bioinformatics to discover cell-to-cell communication networks and keratinocyte cell states that can perpetuate inflammation and prevent repigmentation.


Subject(s)
Vitiligo , CD8-Positive T-Lymphocytes , Humans , Keratinocytes , Melanocytes , Skin
7.
Biomed Opt Express ; 13(3): 1261-1274, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35414985

ABSTRACT

Herein, to investigate a new diagnostic method for Meibomian gland dysfunction (MGD) induced by eyelid inflammation, optical properties and deoxy-hemoglobin (Hb) concentrations in rodent eyelid tissues, including Meibomian glands(MGs), were measured using spatial frequency domain imaging (SFDI). Complete Freund's adjuvant solutions were injected into the eyelid margins of Sprague-Dawley rats to induce MGD. After three weeks, the optical properties and Hb of the MG and non-MG regions of the eyelids were measured ex-vivo using an SFDI system. The comparison of Hb showed that the MGD group exhibited significantly higher values than those of the control group in both regions. The optical properties at 730 and 850 nm for the MG regions in the MGD group were significantly different from those in the control group. In addition, the 630 nm absorption coefficients of both regions were significantly higher in the MGD group than in the control group. Thus, the SFDI technique can detect the increased Hb concentration and changes in the optical properties of the eyelids due to inflammatory MGD in a noncontact manner and has the potential to be used as a novel quantitative diagnostic method for the occurrence of MGD.

8.
J Biomed Opt ; 26(8)2021 08.
Article in English | MEDLINE | ID: mdl-34390234

ABSTRACT

SIGNIFICANCE: Diffuse optical spectroscopic imaging (DOSI) is a versatile technology sensitive to changes in tissue composition and hemodynamics and has been used for a wide variety of clinical applications. Specific applications have prompted the development of versions of the DOSI technology to fit specific clinical needs. This work describes the development and characterization of a multi-modal DOSI (MM-DOSI) system that can acquire metabolic, compositional, and pulsatile information at multiple penetration depths in a single hardware platform. Additionally, a 3D tracking system is integrated with MM-DOSI, which enables registration of the acquired data to the physical imaging area. AIM: We demonstrate imaging, layered compositional analysis, and metabolism tracking capabilities using a single MM-DOSI system on optical phantoms as well as in vivo human tissue. APPROACH: We characterize system performance with a silicone phantom containing an embedded object. To demonstrate multi-layer sensitivity, we imaged human calf tissue with a 4.8-mm skin-adipose thickness. Human thenar tissue was also measured using a combined broadband DOSI and continuous-wave near-infrared spectroscopy method (∼15 Hz acquisition rate). RESULTS: High-resolution optical property maps of absorption (µa) and reduced scattering (µs ' ) were recovered on the phantom by capturing over 1000 measurement points in under 5 minutes. On human calf tissue, we show two probing depth layers have significantly different (p < 0.001) total-hemo/myoglobin and µs ' composition. On thenar tissue, we calculate tissue arterial oxygen saturation, venous oxygen saturation, and tissue metabolic rate of oxygen consumption during baseline and after release of an arterial occlusion. CONCLUSIONS: The MM-DOSI can switch between collection of broadband spectra, high-resolution images, or multi-depth hemodynamics without any hardware reconfiguration. We conclude that MM-DOSI enables acquisition of high resolution, multi-modal data consolidated in a single platform, which can provide a more comprehensive understanding of tissue hemodynamics and composition for a wide range of clinical applications.


Subject(s)
Optical Imaging , Spectroscopy, Near-Infrared , Hemodynamics , Humans , Phantoms, Imaging
9.
J Biomed Opt ; 26(6)2021 06.
Article in English | MEDLINE | ID: mdl-34189875

ABSTRACT

Guest editors Jessica Ramella-Roman, Amir H. Gandjbakhche, Stephen C. Kanick, Babak Shadgan, and Bruce J. Tromberg introduce and summarize the articles included in the 6-part JBO Special Section on Wearable, Implantable, Mobile, and Remote Biomedical Optics Photonics.


Subject(s)
Optics and Photonics , Wearable Electronic Devices , Histological Techniques , Prostheses and Implants
10.
Neurophotonics ; 8(2): 025001, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33842666

ABSTRACT

Significance: Quantitative measures of blood flow and metabolism are essential for improved assessment of brain health and response to ischemic injury. Aim: We demonstrate a multimodal technique for measuring the cerebral metabolic rate of oxygen ( CMRO 2 ) in the rodent brain on an absolute scale ( µ M O 2 / min ). Approach: We use laser speckle imaging at 809 nm and spatial frequency domain imaging at 655, 730, and 850 nm to obtain spatiotemporal maps of cerebral blood flow, tissue absorption ( µ a ), and tissue scattering ( µ s ' ). Knowledge of these three values enables calculation of a characteristic blood flow speed, which in turn is input to a mathematical model with a "zero-flow" boundary condition to calculate absolute CMRO 2 . We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation. With this model, the zero-flow condition occurs during entry into CA. Results: The CMRO 2 values calculated with our method are in good agreement with those measured with magnetic resonance and positron emission tomography by other groups. Conclusions: Our technique provides a quantitative metric of absolute cerebral metabolism that can potentially be used for comparison between animals and longitudinal monitoring of a single animal over multiple days. Though this report focuses on metabolism in a model of ischemia and reperfusion, this technique can potentially be applied to far broader types of acute brain injury and whole-body pathological occurrences.

11.
J Lipid Res ; 62: 100056, 2021.
Article in English | MEDLINE | ID: mdl-33647277

ABSTRACT

Methionine (Met) is an essential amino acid and critical precursor to the cellular methyl donor S-adenosylmethionine. Unlike nontransformed cells, cancer cells have a unique metabolic requirement for Met and are unable to proliferate in growth media where Met is replaced with its metabolic precursor, homocysteine. This metabolic vulnerability is common among cancer cells regardless of tissue origin and is known as "methionine dependence", "methionine stress sensitivity", or the Hoffman effect. The response of lipids to Met stress, however, is not well-understood. Using mass spectroscopy, label-free vibrational microscopy, and next-generation sequencing, we characterize the response of lipids to Met stress in the triple-negative breast cancer cell line MDA-MB-468 and its Met stress insensitive derivative, MDA-MB-468res-R8. Lipidome analysis identified an immediate, global decrease in lipid abundances with the exception of triglycerides and an increase in lipid droplets in response to Met stress specifically in MDA-MB-468 cells. Furthermore, specific gene expression changes were observed as a secondary response to Met stress in MDA-MB-468, resulting in a downregulation of fatty acid metabolic genes and an upregulation of genes in the unfolded protein response pathway. We conclude that the extensive changes in lipid abundance during Met stress is a direct consequence of the modified metabolic profile previously described in Met stress-sensitive cells. The changes in lipid abundance likely results in changes in membrane composition inducing the unfolded protein response we observe.


Subject(s)
Triple Negative Breast Neoplasms
12.
J Biomed Opt ; 26(2)2021 02.
Article in English | MEDLINE | ID: mdl-33624457

ABSTRACT

SIGNIFICANCE: Current imaging paradigms for differential diagnosis of suspicious breast lesions suffer from high false positive rates that force patients to undergo unnecessary biopsies. Diffuse optical spectroscopic imaging (DOSI) noninvasively probes functional hemodynamic and compositional parameters in deep tissue and has been shown to be sensitive to contrast between normal and malignant tissues. AIM: DOSI methods are under investigation as an adjunct to mammography and ultrasound that could reduce false positive rates and unnecessary biopsies, particularly in radiographically dense breasts. METHODS: We performed a retrospective analysis of 212 subjects with suspicious breast lesions who underwent DOSI imaging. Physiological tissue parameters were z-score normalized to the patient's contralateral breast tissue and input to univariate logistic regression models to discriminate between malignant tumors and the surrounding normal tissue. The models were then used to differentiate malignant lesions from benign lesions. RESULTS: Models incorporating several individual hemodynamic parameters were able to accurately distinguish malignant tumors from both the surrounding background tissue and benign lesions with area under the curve (AUC) ≥0.85. Z-score normalization improved the discriminatory ability and calibration of these predictive models relative to unnormalized or ratio-normalized data. CONCLUSIONS: Findings from a large subject population study show how DOSI data normalization that accounts for normal tissue heterogeneity and quantitative statistical regression approaches can be combined to improve the ability of DOSI to diagnose malignant lesions. This improved diagnostic accuracy, combined with the modality's inherent logistical advantages of portability, low cost, and nonionizing radiation, could position DOSI as an effective adjunct modality that could be used to reduce the number of unnecessary invasive biopsies.


Subject(s)
Breast Neoplasms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Diagnosis, Differential , Female , Humans , Mammography , Retrospective Studies , Spectrum Analysis
14.
Biophys J ; 119(2): 258-264, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32610090

ABSTRACT

Investigating the behavior of breast cancer cells via reaction kinetics may help unravel the mechanisms that underlie metabolic changes in tumors. However, obtaining human in vivo kinetic data is challenging because of difficulties associated with measuring these parameters. Nondestructive methods of measuring lipid content in live cells provide a novel approach to quantitatively model lipid synthesis and consumption. In this study, coherent Raman scattering microscopy was used to probe de novo intracellular lipid content. Combining nonlinear optical microscopy and Michaelis-Menten kinetics-based simulations, we isolated fatty acid synthesis/consumption rates and elucidated effects of altered lipid metabolism in T47D breast cancer cells. When treated with 17ß-estradiol, the lipid utilization in cancer cells jumped by twofold. Meanwhile, the rate of de novo lipid synthesis in cancer cells treated with 17ß-estradiol was increased by 42%. To test the model in extreme metabolic conditions, we treated T47D cells with etomoxir. Our kinetic analysis demonstrated that the rate of key enzymatic reactions dropped by 75%. These results underline the capability to probe lipid alterations in live cells with minimum interruption and to characterize lipid metabolism in breast cancer cells via quantitative kinetic models and parameters.


Subject(s)
Breast Neoplasms , Lipid Metabolism , Humans , Kinetics , Lipids , Nonlinear Optical Microscopy
15.
Pigment Cell Melanoma Res ; 33(6): 869-877, 2020 11.
Article in English | MEDLINE | ID: mdl-32485062

ABSTRACT

Multiphoton microscopy (MPM) is a promising non-invasive imaging tool for discriminating benign nevi from melanoma. In this study, we establish a MPM morphologic catalogue of common nevi, information that will be critical in devising strategies to distinguish them from nevi that are evolving to melanoma that may present with more subtle signs of malignancy. Thirty common melanocytic nevi were imaged in vivo using MPM. Quantitative parameters that can distinguish between different types of nevi were developed and confirmed by examining the histology of eleven of the imaged nevi. MPM features of nevi examined included cytologic morphology of melanocytes in the epidermis and dermis, the size and distribution of nevomelanocytes both within and around nests, the size of rete ridges, and the presence of immune cells in the dermis. Distinguishing features include cytological morphology, the size of nevomelanocytes, the size of nevomelanocyte nests, and the distribution of nevomelanocytes. Notably, these distinguishing characteristics were not easily appreciated in fixed tissues, highlighting essential differences in the morphology of live skin. Taken together, this work provides a morphologic compendium of normal nevi, information that will be critical in future studies directed at identifying melanocytic nevi that are evolving to melanoma.


Subject(s)
Microscopy, Fluorescence, Multiphoton , Nevus, Pigmented/diagnostic imaging , Nevus, Pigmented/pathology , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Adult , Aged, 80 and over , Biopsy , Cell Size , Female , Humans , Immunity , Male , Melanocytes/pathology , Middle Aged , Nevus, Pigmented/immunology , Skin Neoplasms/immunology , Young Adult
16.
Breast Cancer Res ; 22(1): 29, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32169100

ABSTRACT

BACKGROUND: Breast cancer patients with early-stage disease are increasingly administered neoadjuvant chemotherapy (NAC) to downstage their tumors prior to surgery. In this setting, approximately 31% of patients fail to respond to therapy. This demonstrates the need for techniques capable of providing personalized feedback about treatment response at the earliest stages of therapy to identify patients likely to benefit from changing treatment. Diffuse optical spectroscopic imaging (DOSI) has emerged as a promising functional imaging technique for NAC monitoring. DOSI uses non-ionizing near-infrared light to provide non-invasive measures of absolute concentrations of tissue chromophores such as oxyhemoglobin. In 2011, we reported a new DOSI prognostic marker, oxyhemoglobin flare: a transient increase in oxyhemoglobin capable of discriminating NAC responders within the first day of treatment. In this follow-up study, DOSI was used to confirm the presence of the flare as well as to investigate whether DOSI markers of NAC response are regimen dependent. METHODS: This dual-center study examined 54 breast tumors receiving NAC measured with DOSI before therapy and the first week following chemotherapy administration. Patients were treated with either a standard of care maximum tolerated dose (MTD) regimen or an investigational metronomic (MET) regimen. Changes in tumor chromophores were tracked throughout the first week and compared to pathologic response and treatment regimen at specific days utilizing generalized estimating equations (GEE). RESULTS: Within patients receiving MTD therapy, the oxyhemoglobin flare was confirmed as a prognostic DOSI marker for response appearing as soon as day 1 with post hoc GEE analysis demonstrating a difference of 48.77% between responders and non-responders (p < 0.0001). Flare was not observed in patients receiving MET therapy. Within all responding patients, the specific treatment was a significant predictor of day 1 changes in oxyhemoglobin, showing a difference of 39.45% (p = 0.0010) between patients receiving MTD and MET regimens. CONCLUSIONS: DOSI optical biomarkers are differentially sensitive to MTD and MET regimens at early timepoints suggesting the specific treatment regimen should be considered in future DOSI studies. Additionally, DOSI may help to identify regimen-specific responses in a more personalized manner, potentially providing critical feedback necessary to implement adaptive changes to the treatment strategy.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/pathology , Hemodynamics/drug effects , Neoadjuvant Therapy/methods , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods , Administration, Metronomic , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Female , Humans , Maximum Tolerated Dose , Middle Aged , Treatment Outcome
17.
J Am Heart Assoc ; 9(1): e012691, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31902319

ABSTRACT

Background Impaired neurological function affects 85% to 90% of cardiac arrest (CA) survivors. Pulsatile blood flow may play an important role in neurological recovery after CA. Cerebral blood flow (CBF) pulsatility immediately, during, and after CA and resuscitation has not been investigated. We characterized the effects of asphyxial CA on short-term (<2 hours after CA) CBF and femoral arterial blood pressure (ABP) pulsatility and studied their relationship to cerebrovascular resistance (CVR) and short-term neuroelectrical recovery. Methods and Results Male rats underwent asphyxial CA followed by cardiopulmonary resuscitation. A multimodal platform combining laser speckle imaging, ABP, and electroencephalography to monitor CBF, peripheral blood pressure, and brain electrophysiology, respectively, was used. CBF and ABP pulsatility and CVR were assessed during baseline, CA, and multiple time points after resuscitation. Neuroelectrical recovery, a surrogate for neurological outcome, was assessed using quantitative electroencephalography 90 minutes after resuscitation. We found that CBF pulsatility differs significantly from baseline at all experimental time points with sustained deficits during the 2 hours of postresuscitation monitoring, whereas ABP pulsatility was relatively unaffected. Alterations in CBF pulsatility were inversely correlated with changes in CVR, but ABP pulsatility had no association to CVR. Interestingly, despite small changes in ABP pulsatility, higher ABP pulsatility was associated with worse neuroelectrical recovery, whereas CBF pulsatility had no association. Conclusions Our results reveal, for the first time, that CBF pulsatility and CVR are significantly altered in the short-term postresuscitation period after CA. Nevertheless, higher ABP pulsatility appears to be inversely associated with neuroelectrical recovery, possibly caused by impaired cerebral autoregulation and/or more severe global cerebral ischemia.


Subject(s)
Arterial Pressure , Brain Waves , Cerebrovascular Circulation , Femoral Artery/physiopathology , Heart Arrest/therapy , Pulsatile Flow , Resuscitation , Animals , Disease Models, Animal , Heart Arrest/physiopathology , Homeostasis , Male , Rats, Wistar , Recovery of Function , Time Factors , Vascular Resistance
19.
IEEE Trans Biomed Eng ; 67(7): 1872-1881, 2020 07.
Article in English | MEDLINE | ID: mdl-31670661

ABSTRACT

OBJECTIVE: Diffuse optical spectroscopic imaging (DOSI) is a promising biophotonic technology for clinical tissue assessment, but is currently hampered by difficult wide area assessment. A co-integrative optical imaging system is proposed for dense sub-surface optical property spatial assessment. METHODS: The proposed system fuses a co-aligned set of camera frames and diffuse optical spectroscopy measurements to generate spatial sub-surface optical property maps. A 3D rigid body motion estimation model was developed by fitting automatically detected target features to an a priori geometric model using a single overhead camera. Point-wise optical properties were measured across the tissue using frequency domain photon migration DOSI. The 3D probe trajectory and temporal optical property data were fused to generate 2D spatial optical property maps, which were projected onto the tissue image using pre-calibrated camera parameters. RESULTS: The system demonstrated sub-millimeter positional accuracy (error 0.24 ± 0.35 mm) across different probe speeds (1.0-3.8 cm/s), and displacement accuracy in overhead ([Formula: see text] mm) and tilted (0.51 ± 0.51 mm) camera orientations. Unstructured scans on a tumor inclusion phantom showed strong contrast under different probe paths, and significant ( ) changes in optical properties in an in vivo leg cuff occlusion protocol with spatial anatomy localization. CONCLUSION: The proposed co-integrative optical imaging system generated dense sub-surface optical property distributions across wide tissue areas with sub-millimeter accuracy at different probe speeds and trajectories, and does not require pre-planned probe route for tissue assessment. SIGNIFICANCE: This system provides a valuable tool for real-time non-invasive tissue health and cancer screening, and enables longitudinal disease progression assessment through unstructured probe-based optical tissue assessment.


Subject(s)
Algorithms , Diagnostic Imaging , Imaging, Three-Dimensional , Microsurgery , Optical Imaging , Phantoms, Imaging , Spectrum Analysis
20.
J Biomed Opt ; 24(7): 1-2, 2019 07.
Article in English | MEDLINE | ID: mdl-31325251

ABSTRACT

This guest editorial introduces the Special Section on Spatial Frequency Domain Imaging.


Subject(s)
Optical Imaging , Humans , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...